

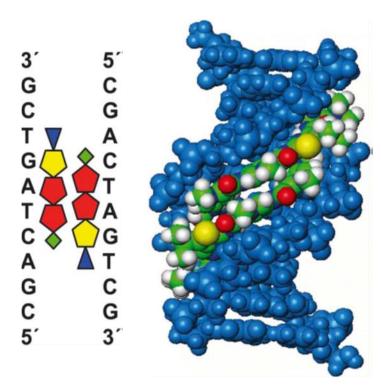
Bringing True Novelty to the Anti-Infective Space

New Class of Antibacterials Based on a Unique Mechanism of Action Dr Dawn Firmin

> SMi's 17th Annual Conference on Superbugs & Superdrugs March 2015

Contents

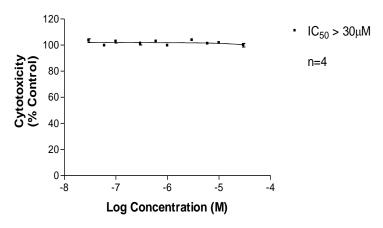
- MGB Biopharma Limited
- Minor Groove Binders
- Clostridium difficile
- MGB-BP-3 Oral Programme
 - Non-clinical Pharmacology
 - Non-clinical Safety
 - Clinical
- Summary
- Thanks

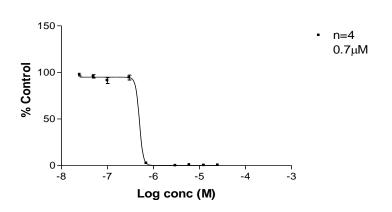

MGB Biopharma Limited

- Founded in Glasgow April 2010
- Based on the University of Strathclydes DNA Minor Groove Binders
- Platform hosts a novel class of anti-infectives
- Completely new mechanism of action distinct from current antimicrobial drugs
- MGB Biopharma's anti-infective platform provides development opportunities for managing Gram-positive, Gram-negative, viral, fungal & parasitic infections
- Lead compound, MGB-BP-3, is being developed for oral, intravenous and topical preparations

MGBs Novel Mode of Action

- MGB-BP-3 binds A-T rich sequences in the minor groove of bacterial DNA via a sequential & conformational process that interferes with transcription and alters genetic regulation
- MGB-BP-3 does not inhibit bacterial DNA replication
- MGB-BP-3 acts at multiple points and affects numerous genes


Binding of MGB-BP ligand to the DNA minor groove; NMR-derived structure


MGBs Selective Toxicity Against Bacteria

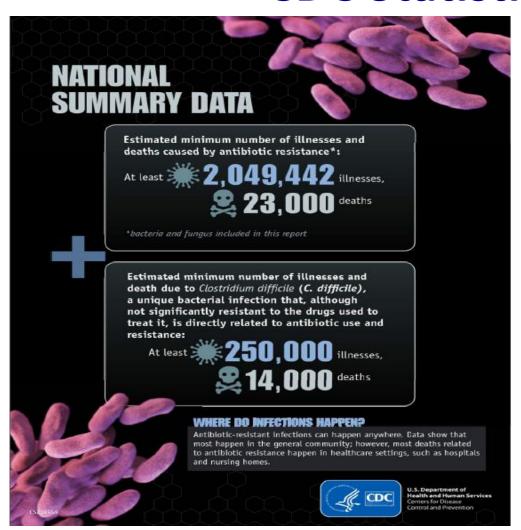
- No toxicity observed in mammalian cells at concentration tested
- Selective toxicity of MGB-BP-3 in bacterial cells e.g. S. aureus

Mammalian Cells

Bacterial Cells

MGB-BP-3 Development

MGB Biopharma's current programmes:


- 1. Oral MGB-BP-3 for treating *C. difficile* infections (CDI)
- 2. Intravenous MGB-BP-3 for treating Gram-positive infection
- 3. Topical MGB-BP-3 for eradication of Gram-positive carrier states

- MGB-BP-3 is the first compound from the MGB platform, with strong activity against Grampositive pathogens
- Oral MGB-BP-3, aimed at CDI, is about to start clinical development

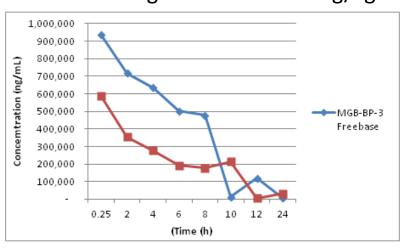
Clostridium difficile CDC Statistics

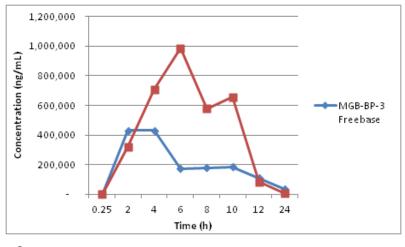
Statistics from the most recent CDC Drug Resistance Threat Report (2013)¹ highlights the number of illnesses and deaths caused by antibiotic resistant bacteria, and how many of these are attributed to *Clostridium difficile*

2014 statistics for the UK were reported as approximately 6,500 *Clostridium difficile* cases^{2&3}

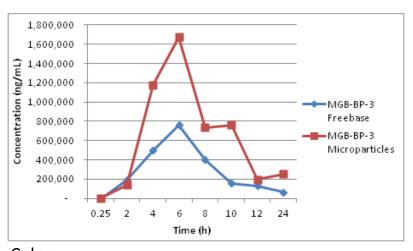
Clostridium difficileCurrent Treatment

Current treatment options are limited

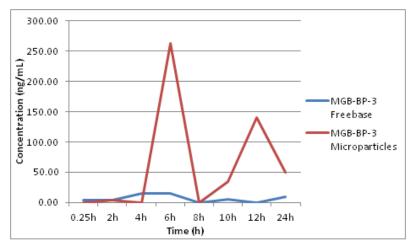

- Until 2010 launch of DIFICID (fidaxomycin –
 Optimer/Cubist/ Astellas) oral metronidazole &
 vancomycin were the only options for treating CDI
- Oral metronidazole is generally used first in mild cases as it is generic; in addition it does not encourage appearance of vancomycin-resistant enterococci (VRE). Vancomycin is only used in severe cases or non-responders
- Utility of these antibiotics is limited due to recurrence;
 either re-infection with same pathogen or new infection



MGB-BP-3 Activity Against C. difficile

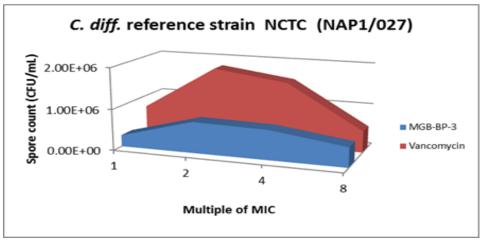

MGB-BP-3 concentrations

Single oral dose 100mg/kg MGB-BP-3 20h post *C. diff* infection



Small Intestine

Caecum



MGB-BP-3 Activity Against *C. difficile*

Activity of MGB-BP-3 against *C. difficile* compared with vancomycin

Hamster model of CDI showed that MGB-BP-3 reduced *C. difficile* CFU/g in the gut and was superior to vancomycin

Sporulation studies showed MGB-BP-3 was superior to vancomycin in reducing *C. difficile* spores CFU/mL

MGB-BP-3 Safety Profiles

Species/Cell line	Dose	Route	Findings
CHO-hERG	10 ⁻⁶ to 10 ⁻⁵ M	In vitro	
	Oral:		
Rat	90 mg/kg,	Oral	
	180mg/kg, and	Oral	
	360mg/kg		
Rat	Oral:		No abnormalities observed from
	90 mg/kg,	Oral	direct drug effects
	180 mg/kg, and	Orai	
	360 mg/kg		
Dog	Oral:		
	44 mg/kg	Oval	
	111 mg/kg	Oral	
	211 mg/kg		

Species	Dose	Route	Duration	Findings
Rat	180mg/kg/day, 360mg/kg/day and 720mg/kg/day	Oral	14 days	No toxic effects NOAEL 720mg/kg/day
Dog	76mg/kg/day	Oral	14 days	NOAEL (male dogs) 59mg/kg/day

MGB-BP-3 Clinical Development Programme

Single Ascending Dose (SAD)

Cohort	Study session	n=2	n=2	n=2	n=2
	1	DL 1	DL 1	DL 1	Placebo
1	2	DL 2	DL 2	Placebo	DL 2
	3	DL 3	Placebo	DL 3	DL 3
	1	DL 4	DL 4	DL 4	Placebo
2	2	DL 5	DL 5	Placebo	DL 5
	3	DL 6	Placebo	DL 6	DL 6

Multiple Ascending Dose (MAD)

Cohort	n=6	n=2
1	DL 1	Placebo
2	DL 2	Placebo
3	DL 3	Placebo

Phase I completion End 2015

MGB-BP-3 Summary

- New class and novel Mode of Action
- Potent activity to Clostridium difficile and a range of aerobic Gram-positive bacteria
- Superior activity to vancomycin
- Oral programme for the treatment of Clostridium difficile infections about to enter Phase I
- Development of intravenous formulation for the treatment of systemic Gram-positive disease is near POC completion
- Development of topical formulation for managing carriage feasibility testing

Acknowledgements

Funding Entities:

Archangels Investment, Tri-Cap, Barwell, SIB, Innovate UK

University of Strathclyde:

The Lab of Prof. Colin Suckling

NHS Lanarkshire:

Consultant Clinical Microbiologist Dr Stephanie Dancer

Supporters & Agency Involvement

Hammersmith Medicines Research

